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Exploring	the	Birthday	Paradox	
	
	
Introduction:	
	
A	few	weeks	ago	at	a	family	event,	I	found	out	that	one	of	my	uncles	in	a	group	of	
around	30	people	had	the	same	birthday	as	my	sister.	Having	been	fascinated	
with	probability	theory	since	high	school,	I	began	contemplating	the	odds	of	this	
coincidence	occurring.	Initially,	I	assumed	that,	since	in	a	given	year	there	are	
365	days	to	be	born	on,	the	probability	of	two	people	sharing	their	birthdays	in	a	
group	of	30	people	would	be	really	low.	However,	on	further	research	on	this	
topic,	I	was	introduced	to	the	Birthday	Paradox/Problem.	
	
The	birthday	problem	refers	to	the	probability	that	in	a	set	of	n	random	people,	
two	of	them	will	share	the	same	birthday.	It	belongs	in	the	world	of	the	
probability	theory	and	is	alternatively	known	as	the	birthday	paradox.	The	
paradox	does	not	arise	from	the	fact	that	the	solution	arrived	at	through	this	
problem	is	illogical,	but	the	underestimation	of	this	solution	by	people,	hence	
perceiving	it	as	a	paradox	of	sorts.	
	
While	considering	the	probability	of	a	person	sharing	his/her	birthday	with	
someone,	we	instinctively	assume	that	we	are	that	someone,	a	consideration	that	
makes	the	scenario	seem	more	improbable	than	it	is.	Hence,	our	assumption	is	
that	the	probability	of	two	people	sharing	the	same	birthday	is	very	low	since	
there	are	365	days	in	a	year	and	therefore	365	possibilities.	
	
Another	factor	known	as	the	Pigeonhole	Principle	come	into	play	here.	The	
principle	states	that	“given	n	boxes	and	m>n	objects,	at	least	one	box	must	contain	
more	than	one	object.”	1This	means	that	supposing	we	have	53	children,	at	least	
two	of	them	should	have	their	birthday	in	the	same	week	(since	there	are	52	
weeks	in	a	year	and	53>52).	Hence,	accordingly,	the	probability	of	two	people	
having	same	birthday	will	be	100%	if	there	are	a	total	of	366	people	(not	a	leap	
year).	
	 	
However,	in	my	exploration	of	this	paradox,	the	numbers	are	quite	different	
from	what	we	perceive	them	to	be.	
	
	
	
	
	
	

	
1	http://mathworld.wolfram.com/DirichletsBoxPrinciple.html.	2:38pm,	
15/11/13	
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Case	1:	
	
In	this	case	we	explore	the	minimum	number	of	people	required	in	a	room	such	
that	there	is	a	greater	than	or	equal	chance	of	two	people	having	the	same	
birthday	than	not.	
	
We	make	two	assumptions	before	going	ahead	with	this	problem,	and	the	ones	
tackled	further	on:	
	

• There	are	no	leap	years.	Therefore,	the	number	of	days	in	a	year	is	365.	
• There	is	an	equal	probability	of	a	person	being	born	on	any	date.	No	

particular	date	has	a	greater	chance	of	being	born	on.	
	
Now,	let	the	probability	of	two	people	being	born	on	the	same	date	be	P(a).	
Alternatively,	let	the	probability	of	two	people	not	being	born	on	the	same	day	be	
P(b).	Since	these	events	are	complementary	
	

𝑃(𝑎) + 𝑃(𝑏) = 1	
	
It	is	easier	to	calculate	P(b),	hence	I	will	determine	it	first.		
		
We	know,	
	

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
𝐷𝑒𝑠𝑖𝑟𝑒𝑑	𝑜𝑢𝑡𝑐𝑜𝑚𝑒𝑠	

𝑇𝑜𝑡𝑎𝑙	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑜𝑢𝑡𝑐𝑜𝑚𝑒𝑠	

	
Since	there	are	365	days	in	a	year,	the	total	number	of	days	in	which	a	person	
can	have	his	birthday	is	365.		Also,	the	1st	person	could	have	been	born	on	any	
day;	therefore	the	probability	of	him	being	born	on	some	day	is	!"#

!"#
	

	
The	2nd	person	can	only	be	born	on	any	of	the	remaining	364	days,	since	the	
birthdays	cannot	be	shared.	Therefore,	for	him	the	probability	is	

!"$
!"#

	
	
Similarly,	for	the	3rd	person	the	probability	is	

!"!
!"#
,	so	on	and	so	forth.		Hence,	for	

the	N-th	person,	the	probability	of	being	born	on	a	day	other	than	the	previous	
N-1	days	would	be	

!"#%&'(
!"#

	
	
Therefore,	if	there	are	N	people	in	the	room,	the	probability	of	no	person	sharing	
his/her	birthday	is	
	

𝑃(𝑏) = !"#
!"#

× !"$
!"#

× !"!
!"#

× !")
!"#
		.		.		.		.		.	!"#%&'(

!"#
= !"#!

!"#!(!"#%&)!
	

	
	
Hence,	
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𝑃(𝑎) = 1 −
365!

365&(365 − 𝑁)!
	

	
Also,	we	require	the	minimum	number	of	people	such	that	P(a)	≥	P(b);	
therefore,	P(a)	is	atleast	greater	than	or	equal	to	0.5,	since	P(a)+P(b)=1.	Hence	
	
	

1 −
365!

365&(365 − 𝑁)!
≥ 0.5	

	
365!

365&(365 − 𝑁)!
≤ 0.5	

	
	
Since	it	is	not	possible	to	further	solve	this	inequality	without	using	a	
mathematical	calculator,	we	can	convert	it	into	a	Taylor’s	series	to	find	an	
algebraic	solution.	In	the	Taylor’s	series	expansion	of	e,	the	value	of	𝑒!	is	given	as	
	
	

𝑒- = 1 +
𝑥
1!
+
𝑥)

2!
+
𝑥!

3!
+ ⋯ , −∞ < 𝑥 < ∞	

	
	
	
When	x	is	small,	we	can	approximate	the	series	to	
	

𝑒- = 1 + 𝑥	
	
We	had	determined	that	
	
𝑃(𝑏) = !"#

!"#
× !"$
!"#

× !"!
!"#

× !"%
!"#
		.		.		.		.		.	!"#&'()

!"#
	

	
This	can	be	rewritten	as	
	

= ;1 − .
!"#
< × ;1 − (

!"#
< × ;1 − )

!"#
< × ;1 − !

!"#
<		.		.		.	;1 − &%(

!"#
<	

	
Using	these	values,	we	can	create	a	Taylor’s	series	by	setting	x= .

!"#
	for	the	first	

term,	x=%(
!"#
	for	the	second	term	and	so	on	and	so	forth.	Therefore,	we	get	

	

𝑃(𝑏) = 𝑒
.
!"# × 𝑒

%(
!"# × 𝑒

%)
!"# × 𝑒

%!
!"#.		.		. 𝑒

%(&%()
!"# 	
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But,	𝑒

"
#$%	is	1,	therefore	

	

= 𝑒
&)
!"# × 𝑒

&%
!"# × 𝑒

&!
!"#.		.		. 𝑒

&('&))
!"# 	

	

= 𝑒
&)
!"#()(%(!...'&))	

	

= 𝑒
&)
!"#(∑ .!"#

$%# )	
	

= 𝑒
&)
!"#(

'('&))
% )	

	
Now	that	we	have	found	P	(b),	we	can	use	the	P	(a)+P	(b)=1	to	find	P	(a)	
	

𝑃(𝑎) = 1 − 𝑒
&)
!"#(

'('&))
% )	

	
We	need	P(a)	≥ 𝑃(b),	therefore	
	

1 − 𝑒
&)
!"#(

'('&))
% ) ≥ 0.5	

	

𝑒
&)
!"#(

'('&))
% ) ≤ 0.5	

	
Logging	both	sides,	
	

−1
365

>
𝑁(𝑁 − 1)

2
? ≤ 𝑙𝑛 0.5	

	
𝑁(𝑁 − 1) ≥ −730 𝑙𝑛 0.5	

	
𝑁) − 𝑁 ≥ −730 𝑙𝑛 0.5	

	
𝑁) − 𝑁 + 730 𝑙𝑛 0.5 ≥ 0	

	

Hence	we	can	use	the	quadratic	formula,	𝑥 = %/±√/&%$23
)2

,	to	find	the	value	of	N	
	
	



          Vedant Batra 	
	

5	

𝑁 =
1 ± D1 − 4(730 ln 0.5)

2
	

	

𝑁 =
1 ± 44.999

2
	

	
But	N	is	positive,	
	

𝑁 =
1 + 44.999

2
	

	
And	we	need	the	smallest	integer,	
	

∴ 𝑁	~	23	
	
	
The	least	number	of	people	required	in	a	room	such	that	the	probability	of	two	of	
them	having	the	same	birthday	is	greater	than	or	equal	to	the	probability	of	each	
individual	being	born	on	a	separate	date.	The	answer	we	arrive	at	is	23.	
Therefore,	when	there	are	23	individuals	in	the	room	there	is	a	50%	chance	that	
two	individuals	have	the	same	birthday.	This	number	is	much	smaller	than	the	
one	we	would	assume	–	183	–	using	the	Pigeonhole	principle.	It	also	shows	that	
in	the	group	of	40	people	in	my	family	function,	the	probability	of	my	sister	
sharing	her	birthday	with	my	uncle	was	considerably	high,	something	that	I	
thought	was	an	unlikely	event	to	happen.	
	
	
	
It	is	also	possible	to	make	a	graph	for	the	probability	of	two	people	sharing	a	
birthday.	In	order	to	do	so	we	take	the	equation:	
	

𝑃(𝑎) = 1 − 𝑒
%(
!"#(

&(&%()
) )	

	
	
And	obtain	the	following	data	using	a	calculator,	

	
	

Number	of	People																			Probability	
(Till	5	decimal	spaces)	

	
0	 	 0	
5	 	 0.02714	
10	 	 0.11695	
15	 	 0.25290	
20	 	 0.41144	
25	 	 0.56870	
30	 	 0.70632	
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35	 	 0.81438	
40	 	 0.89123	
45	 	 0.94098	
50	 	 0.97037	
55	 	 0.98626	
60	 	 0.99412	
65	 	 0.99768	
70	 	 0.99916	
75	 	 0.99972	
80	 	 0.99991	
85	 	 0.99998	
90	 	 0.99999	
95	 	 1	
100	 	 1	

	
	
Using	these	values	we	construct	a	graph,	
	

	
	
In	this	graph	we	can	see	that	at	approximately	23	individuals	the	probability	of	
two	people	sharing	their	birthday	is	around	0.5.	Interestingly,	it	can	also	be	seen	
that	in	a	room	of	around	57-58	individuals	the	probability	of	two	people	sharing	
a	birthday	becomes	around	99%	(since	a	probability	of	100%	is	the	horizontal	
asymptote,	it	cannot	be	achieved),	a	number	that	is	quite	small	considering	the	
total	number	of	days	in	a	year.	It	also	shows	that	at	my	family	function,	in	that	
group	of	30	people	there	was	70%	chance	of	people	having	the	same	birthdays,	
which	turned	out	to	be	the	birthdays	of	my	uncle	and	sister.	
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There	is	an	alternative	method	that	can	be	used	to	find	the	probability	of	two	
people	sharing	a	birthday	when	the	number	of	people	in	the	room	is	given.	This	
method	can	be	used	to	check	the	answer	that	is	obtained	on	solving	the	Taylor	
series	equation	for	Case	1.	
	
In	a	room	with	r	people,	to	determine	the	total	number	of	combinations	for	pairs	
of	two	people,	we	use	the	formula	
	

𝐶(𝑟, 2) =
𝑟!

2! (𝑟 − 2)!
	

	
Therefore	for	23	people,	the	number	of	combinations	is	
	

𝐶(23,2) =
23!

2! (21)!
	

	
	

=
23 × 22

2
	

	
= 253	

	
Hence	there	are	253	pairs	of	two	people	each	possible	in	a	room	of	23	
individuals	
	
In	order	to	calculate	P(b),	the	probability	of	no	person	sharing	his	birthday,	let	us	
assume	that	there	are	just	two	people	in	the	room.	Therefore,	the	first	person	
can	be	born	on	any	of	the	365	days,	but	the	second	individual	must	be	born	on	
one	of	the	remaining	364	days	so	that	he	has	a	different	birthday.	Hence,	the	
probability	of	these	two	people	having	different	birthdays	is	
	

1 −
1
365

	

	

=
364
365

	

	
Now,	for	a	room	of	23	people,	in	order	to	determine	the	probability	of	a	similar	
event,	we	will	have	to	multiple	the	solution	we	arrived	at	C(23,2)	times.	
	

𝑃(𝑏) =
364
365

%#!
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~0.499523	

	
Therefore	the	probability	of	two	individuals	sharing	a	birthday	in	a	room	of	23	
people	is	
	
	

1 − 0.499523	
	

~0.50047	
	
Hence,	the	answer	we	get	is	approximately	50%,	and	it	verifies	the	method	we	
used	to	solve	the	problem	posed	in	case	1.	
	
	
Case	2:	
	
Once	I	realized	that	the	probability	of	two	people	sharing	a	birthday	was	higher	
than	50%	at	my	family	function,	I	began	contemplating	that	what	would	the	size	
of	a	group	of	people	have	to	be	such	that	I	have	a	greater	chance	of	sharing	my	
birthday	someone?	
	
Therefore,	in	this	case	we	explore	the	minimum	number	of	people	required	in	a	
room	such	that	there	is	a	greater	than	or	equal	chance	of	a	person	having	the	
same	birthday	as	me	than	not.	
	
Before	moving	on	with	this	problem,	lets	look	at	the	probability	of	a	person	
being	born	on	October	12th	(my	birthday)	in	a	room	of	23	people.	
	
Let	the	probability	of	none	of	the	23	people	having	October	12th	as	their	birthday	
be	Q(b).	Since	they	can	be	born	on	all	days	except	one,	
	
	

𝑄(𝑏) = ?
364
365

@
%!
	

	
Therefore,	the	probability	that	at	least	one	person	was	born	on	October	12th,	
Q(a),	is	
	

𝑄(𝑎) = 1 − ?
364
365

@
%!
	

	
This	is	because	both	events	are	complementary	and	hence,	Q(a)+Q(b)=1	
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𝑄(𝑎) = 1 − (0.99726)%!	
	

𝑄(𝑎) = 1 − 0.93885	
	

𝑄(𝑎) = 0.06115	
	
Therefore	there	is	roughly	a	6%	chance	that	in	a	group	of	23	individuals	at	least	
one	of	them	will	share	his	birthday	with	me	as	compared	to	50%	for	two	
random	individuals	to	share	their	birthdays.	This	explains	why	we	assume	that	
the	probability	of	two	people	sharing	a	birthday	is	really	low.	We	subconsciously	
believe	one	of	the	persons	to	be	us	and	hence	the	probability	of	the	event	
decreases	by	a	great	extent,	as	large	as	88%	in	this	case,	leading	to	the	‘paradox’	
in	the	birthday	problem.	
	
Moving	on	to	the	case,	we	need	to	determine	the	minimum	number	of	
individuals	required	such	that	Q(a)	≥	Q(b).	Hence,	the	23	people	are	replaced	by	
N	number	of	people.	
	
Therefore,	the	probability	that	none	of	the	N	people	were	born	on	October	12th	is	
	

𝑄(𝑏) = ?
364
365

@
'
	

	
And,	

𝑄(𝑎) = 1 − ?
364
365

@
'
	

	
Also	as	in	case	1,	due	to	the	complementary	nature	of	events,	P(a)	is	at	least	
greater	than	or	equal	to	0.5.	

1 − ?
364
365

@
'
≥ 0.5	

	

?
364
365

@
'
≤ 0.5	

	
Logging	both	sides,	
	

𝑁 × 𝑙𝑜𝑔 ?
364
365

@ ≤ 𝑙𝑜𝑔 0.5	
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−0.002743𝑁 ≤ −0.693147	

	
0.002743𝑁 ≥ 0.693147	

	
𝑁 ≥ 252.696	

	
∴ 𝑁	~	253	

	
	
Hence,	it	takes	a	room	of	around	253	people	so	that	the	probability	of	at	least	
one	person	having	the	same	birthday	as	me	is	50%.	It	is	interesting	to	note	that	
the	reason	this	number	is	greater	than	even	half	the	number	of	days	in	a	year	is	
because	of	the	chance	that	other	people	could	have	the	same	birthdays,	
decreasing	the	probability	of	me	sharing	my	birthday	with	someone.	
	
	
In	fact	it	is	also	possible	to	construct	a	graph	for	the	probability	of	a	person	
sharing	his	birthday	with	me	using	the	equation,	

𝑄(𝑎) = 1 − ?
364
365

@
'
	

	
And	obtain	the	following	data	through	a	calculator,	

	
Number	of	People																				Probability	
(Till	5	decimal	spaces)	

 
0  0 
10  0.02706 
20  0.05339 
30  0.07901 
40  0.10393 
50  0.12818 
60  0.15177 
70  0.17473 
80  0.19706 
90  0.21879 
100  0.23993 
110  0.26050 
120  0.28051 
130  0.29998 
140  0.31893 
150  0.33736 
160  0.35529 
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170  0.37274 
180  0.38971 
190  0.40623 
200  0.42230 
210  0.43793 
220  0.45314 
230  0.46794 
240  0.48234 
250  0.49635 
260  0.50998 
270  0.52324 
280  0.53614 
290  0.54869 
300  0.56091 

	
Using	these	values	we	construct	a	graph,	
	

	
	
	
This	graph	makes	it	apparent	as	to	why	it	is	extremely	unlikely	to	find	a	person	
with	whom	we	share	our	birthday.	As	calculated	earlier,	we	need	a	minimum	of	
253	individuals	for	a	50%	chance	of	finding	someone	with	the	same	birthday	as	
us.	In	fact,	the	huge	number	of	people	required	for	a	100%	probability,	made	it	
impractical	for	me	to	even	complete	the	graph.	However,	if	I	do	continue	it,	then	
it	will	take	at	least	a	group	of	1680	individuals	for	me	to	have	a	99%	(as	
probability	of	100%	cannot	be	achieved)	chance	of	finding	someone	born	on	
October	12th.	That	is	an	extremely	large	number	of	people,	around	the	size	of	my	
entire	school!	
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Extension:	
	
Recently	I	was	standing	in	a	queue	to	purchase	tickets	for	an	upcoming	film.	I	
was	standing	at	the	fifth	position	from	the	front	of	the	line,	when	the	theatre	
employees	announced	that	the	first	individual	who	shares	his/her	birthday	with	
any	of	the	individuals	in	the	queue	in	front	of	him/her	would	win	a	free	movie	
ticket.	I	began	contemplating	the	probability	of	me	being	that	person,	and	this	
problem	became	my	“movie	line	dilemma”.	In	this	problem	the	first	individual	
who	has	the	same	birthday	with	any	of	the	individuals	in	front	of	him	wins	a	free	
movie	ticket.	Hence,	the	problem	looks	at	where	an	individual	should	stand	in	
line	to	have	the	best	chance	of	winning	the	free	movie	tickets.	It	is	assumed	that	
the	1st	person	in	line	cannot	win	a	movie	ticket.	
	
Let	N	be	the	individual	in	line	purchasing	a	ticket.	Since	we	the	probability	of	the	
1st	Individual	winning	a	ticket	is	zero,	
	

𝑃(1) = 0	
	
In	order	for	the	2nd	individual	to	win	tickets,	his	birthday	would	have	to	be	the	
same	as	that	of	the	1st	individual.	Also	the	1st	person	can	have	his	birthday	on	any	
of	the	365/365	days,	but	the	2nd	person	can	only	have	it	on	1/365	days.	
Therefore,	
	

𝑃(2) =
365
365

×
1
365

	
	
For	the	3rd	individual	to	win,	his	birthday	must	be	same	as	that	of	1st	or	2nd	
individual.	Now	the	1st	person	can	be	born	on	365/365	days,	and	we	assume	that	
the	2nd	person	did	not	share	his	birthday	with	the	1st	person;	therefore	he	can	be	
born	on	any	of	the	364/365	days.	This	leaves	the	3rd	individual	with	2/365	days	
to	be	born	on	in	order	to	win	tickets.	Hence,	
	

𝑃(3) =
365
365

×
364
365

×
2
365

	
	
	
	
	
Similarly,	for	the	4th	person,	
	

𝑃(4) =
365
365

×
364
365

×
363
365

×
3
365

	
	
	
Therefore,	we	can	obtain	the	general	formula,	
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𝑃(𝑁) =
[365 × 364 × 363. . . . (365 − 𝑛 + 2)](𝑛 − 1)

3654
	

	
	
Using	this	equation,	we	can	calculate	the	following	data,		
	
	
	

	
	
	
	
	
	
	
	
	

N												Probability									N																Probability				N																Probability					N														Probability	
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Using	these	values	we	construct	a	graph,	
	
	

	
		
From	both,	the	data	calculated	and	the	graph	constructed,	it	becomes	clear	that	it	
is	somewhere	around	the	20th	person	that	the	probability	of	sharing	the	birthday	
with	a	person	in	front	of	the	line	becomes	greatest	at	approximately	3.23%.	This	
means	that	if	a	person	wants	to	have	the	greatest	chance	of	winning	a	movie	
ticket	he	should	stand	at	the	20th	spot	from	the	front	of	the	line.	Sadly,	for	me	
that	day,	the	probability	to	win	a	movie	ticket	was	a	dismal	1.078%.	
	

	
Conclusion:	
	
This	exploration	provided	me	the	opportunity	to	explore	the	intriguing	Birthday	
Problem.	Drawing	inspiration	from	the	coincidence	of	my	sister	sharing	her	
birthday	with	my	uncle,	I	used	this	project	to	explore	the	minimum	number	of	
people	required	in	a	room	such	that	the	probability	of	two	people	sharing	a	
birthday	is	0.5.	Investigating	the	probability	of	me	and	another	person	having	
the	same	birthday	helped	me	to	truly	understand	the	‘paradox’	of	the	birthday	
problem.		I	learnt	that	the	paradox	is	an	amalgamation	of	psychology	and	
mathematics,	stemming	from	the	fact	that	we	subconsciously	assume	ourselves	
to	be	one	of	the	two	people	sharing	birthdays,	and	thereby	distorting	the	
mathematics	of	the	problem.	Using	the	birthday	problem	to	tackle	my	movie	
dilemma,	gave	me	a	better	insight	as	to	where	I	should	stand	the	next	time	my	
local	theatre	decided	to	give	free	tickets	again!	
	
In	all,	this	exploration	gave	me	a	valuable	insight	into	the	world	of	probability	
and	made	me	rethink	my	existing	prejudices	on	the	likelihood	of	a	number	of	
events	occurring.	
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